Question - How is KNN different from k-means?
Answer -
KNN or K nearest neighbors is a supervised algorithm which is used for classification purpose. In KNN, a test sample is given as the class of the majority of its nearest neighbors. On the other side, K-means is an unsupervised algorithm which is mainly used for clustering. In k-means clustering, it needs a set of unlabeled points and a threshold only. The algorithm further takes unlabeled data and learns how to cluster it into groups by computing the mean of the distance between different unlabeled points.