Chemical Engineering Interview Questions and Answers
Question - 31 : - What Is The Definition Of "good" Cooling Tower Water?
Answer - 31 : -
Generally speaking, cooling tower water should have a pH between 6 and 8, a chloride content no more than 750 ppm, a sulfate content (SO4) below 1200 ppm, and a sodium bicarbonate (NaHCO3) content below 200 ppm. Additionally, cooling tower water should not be heated past 120 °F to avoid plating out of treatment chemicals in process coolers.
In addition, if free chlorine is used for biological growth control, it should be added intermittently with a free residual not to exceed 1 ppm and this should be maintained for short periods.
Question - 32 : - When Specifying A Cooling Tower, Should I Look Up Historic Wet Bulb Temperatures For My Area Or Should I Take Measurements?
Answer - 32 : -
If this is a new installation, look up historical wet bulb temperatures for area and be sure to report them to the cooling tower manufacturer as "ambient wet bulb temperatures". The manufacturer will adjust this temperature accordingly to estimate an "entering wet bulb temperature".
If you have an existing tower that is to be replaced, take several wet bulb temperature measurements near the air inlet during the hottest months. Report this as the "entering wet bulb temperature" to the tower manufacturer.
The difference between the ambient and the entering wet bulb temperatures is to account for wet recirculation from the tower exit back to the tower entrance. The entering wet bulb temperature always higher than the ambient wet bulb temperature.
Question - 33 : - Is There A Rule Of Thumb To Estimate The Footprint Of A Cooling Tower During Design Phase?
Answer - 33 : -
Over the years, this one has seemed to stand the test of time:
Every million Btu/h of tower capacity will require approximately 1000 ft2 of cooling tower basin area.
Question - 34 : - What Could Be A Possible Cause For Sudden Foaming In A Cooling Tower?
Answer - 34 : -
Assuming that no other changes have been made, especially to the water treatment chemicals, the most common outcome to this mystery is a leaking heat exchanger.
Begin a systematic check of all of the heat exchangers that use the cooling tower water and inspect them thoroughly for leaks. Even small amounts of some chemicals can cause big foaming problems in the tower. In addition, not all of these components will set off a conductivity alarm.
Question - 35 : - What Factors Should Be Compared When Evaluating Cooling Tower Bids?
Answer - 35 : -
Examining the following factors should allow for a reasonable evaluation of cooling towers:
- Purchased cost
- Installed cost
- Fan energy consumption
- Pump energy consumption
- Water use
- Water treatment costs
- Expected maintenance costs
- Worker safety requirements
- Environmental safety
- Expected service life
Question - 36 : - For A Heat Exchanger, Will The Overall Heat Transfer Coefficient Increase Along With An Increase In Lmtd (log Mean Temperature Difference) Around The Unit?
Answer - 36 : -
The overall heat transfer coefficient is generally weakly dependent on temperature. As the temperatures of the fluids change, the degree to which the overall heat transfer coefficient will be affected depends on the sensitivity of the fluid's viscosity to temperature. If both fluids are water, for example, the overall heat transfer coefficient will not vary much with temperature because water's viscosity does not change dramatically with temperature. If, however, one of the fluids is oil which may have a viscosity of 1000 cP at 50 °F and 5 cP at 400 °F, then indeed the overall heat transfer coefficient would be much better at higher temperatures since the oil side would be limiting.
Realize that the overall heat transfer coefficient is dictated by the local heat transfer coefficients and the wall resistances of the heat exchanger. The local heat transfer coefficients are dictated by the fluid's physical properties and the velocity of the fluid through the exchanger. So, for a given heat exchanger, fluid flow rates, and characteristics of each fluid....the area of the exchanger and the overall heat transfer coefficients are fixed (theoretically anyway....as the overall heat transfer coefficient does vary slightly along the length of the exchanger with temperature as I've noted and the U-value will decrease over time with fouling).
Question - 37 : - What Is Condensate Lift?
Answer - 37 : -
This is a term that is usually used to indicate how much pressure is required to 'lift' condensate from a steam trap or other device to it's destination at a condensate return line or condensate vessel. The first image below shows a situation where a properly sized control valve is used on a steam heater. During nominal operation, the utility steam undergoes a nominal 10-25 psi pressure loss through the valve. For typical utility steam (150 psi or higher), this can leave a pressure at the steam trap exit that is often adequate to lift the condensate to its destination. For example, if the steam losses 20 psi through the valve and another 15 psi through the heater and piping, that can leave up to 265 ft of head to push the condensate to the header. In this case, there is little need for a condensate pump.
On the other hand, if the control is too large, it will only be a few percent open during normal operation and the steam can undergo a pressure loss of 50-75 psi or even higher! In addition to supplying terrible control for the heater, it also reduces the available head for condensate lift. In this case, or if the steam supply pressure is relatively low, it may be necessary follow the steam trap with a separation vessel and a condensate pump to push the condensate to the return line.
Question - 38 : - What Type Of Heat Exchangers Are Most Commonly Used For A Large-scale Plant-cooling Loop Using Seawater As The Utility?
Answer - 38 : -
Commonly known as a "secondary cooling loop" or SECOOL, a closed loop water system is circulated through a processing plant near a sea. Process heat is transferred into the closed loop water and then this water is circulated through heat exchangers to transfer (reject) the heat to seawater. This is a hallmark plate and frame heat exchanger application.
The higher heat transfer coefficients that are available in plate and frames exchangers (PHEs) will minimize the installed cost because the material of construction of choice it Grade 1 Titanium (higher U-value means lower area). To combat pluggage the narrow passages in the exchangers, the seawater is typically run through large automatic backflush strainers designed especially for seawater. Periodically, these strainers will reverse flow and "blowdown" debris to clear the strainer. This method has been used for many years with great success.
Question - 39 : - Can Condensate Control In A Reboiler Cause Water Hammer Problems?
Answer - 39 : -
It is very common to control reboilers on distillation columns via this method. This is not to say that this control method is the best for any heat exchanger using steam for heating. For example, if there is an appreciable degree of subcooling of the condensate, the incoming steam can experience "collapse" (or thermal water hammer) when it is exposed to the cool condensate. In reboilers, the process fluid is simply being vaporized so little or no subcooling of the condensate takes place.
This makes for a good opportunity for condensate level control in a vertically oriented shell and tube reboiler. The level controller is typically placed on a vessel that is installed in conjunction with the shell side of the reboiler. This will allow for full condensate drainage (if necessary) and there is no need to weld on the shell of the exchanger
Question - 40 : - Why Is A Vacuum Breaker Used On Shell And Tube Heat Exchangers That Are Utilizing Steam As The Heating Utility?
Answer - 40 : -
Vacuum breakers are often installed on the shell side (steam side) of shell and tube exchangers to allow air to enter the shell in case of vacuum conditions developing inside the shell. For an exchanger such as this, the shell side should already be rated for full vacuum so the vacuum breaker is not a pressure (vacuum) relief device. Development of vacuum in the shell could allow condensate to build in the unit and water hammer may result.