• +91 9971497814
  • info@interviewmaterial.com

Computer Interview Questions Answers

Manual Testing Interview Questions Answers

Question - 11 : - What's the big deal about 'requirements'?

Answer - 11 : - One of the most reliable methods of insuring problems, or failure, in a complex software project is to have poorly documented requirements specifications. Requirements are the details describing an application's externally-perceived functionality and properties. Requirements should be clear, complete, reasonably detailed, cohesive, attainable, and testable. A non-testable requirement would be, for example, 'user-friendly' (too subjective). A testable requirement would be something like 'the user must enter their previously-assigned password to access the application'. Determining and organizing requirements details in a useful and efficient way can be a difficult effort; different methods are available depending on the particular project. Many books are available that describe various approaches to this task. (See the Bookstore section's 'Software Requirements Engineering' category for books on Software Requirements.) Care should be taken to involve ALL of a project's significant 'customers' in the requirements process. 'Customers' could be in-house personnel or out, and could include end-users, customer acceptance testers, customer contract officers, customer management, future software maintenance engineers, salespeople, etc. Anyone who could later derail the project if their expectations aren't met should be included if possible. Organizations vary considerably in their handling of requirements specifications. Ideally, the requirements are spelled out in a document with statements such as 'The product shall.....'. 'Design' specifications should not be confused with 'requirements'; design specifications should be traceable back to the requirements. In some organizations requirements may end up in high level project plans, functional specification documents, in design documents, or in other documents at various levels of detail. No matter what they are called, some type of documentation with detailed requirements will be needed by testers in order to properly plan and execute tests. Without such documentation, there will be no clear-cut way to determine if a software application is performing correctly. 'Agile' methods such as XP use methods requiring close interaction and cooperation between programmers and customers/end-users to iteratively develop requirements. The programmer uses 'Test first' development to first create automated unit testing code, which essentially embodies the requirements. <

Question - 12 : - What makes a good test engineer?

Answer - 12 : - A good test engineer has a 'test to break' attitude, an ability to take the point of view of the customer, a strong desire for quality, and an attention to detail. Tact and diplomacy are useful in maintaining a cooperative relationship with developers, and an ability to communicate with both technical (developers) and non-technical (customers, management) people is useful. Previous software development experience can be helpful as it provides a deeper understanding of the software development process, gives the tester an appreciation for the developers' point of view, and reduce the learning curve in automated test tool programming. Judgment skills are needed to assess high-risk areas of an application on which to focus testing efforts when time is limited.

Question - 13 : - What steps are needed to develop and run software tests?

Answer - 13 : - The following are some of the steps to consider: • Obtain requirements, functional design, and internal design specifications and other necessary documents • Obtain budget and schedule requirements • Determine project-related personnel and their responsibilities, reporting requirements, required standards and processes (such as release processes, change processes, etc.) • Identify application's higher-risk aspects, set priorities, and determine scope and limitations of tests • Determine test approaches and methods - unit, integration, functional, system, load, usability tests, etc. • Determine test environment requirements (hardware, software, communications, etc.) • Determine testware requirements (record/playback tools, coverage analyzers, test tracking, problem/bug tracking, etc.) • Determine test input data requirements • Identify tasks, those responsible for tasks, and labor requirements • Set schedule estimates, timelines, milestones • Determine input equivalence classes, boundary value analyses, error classes • Prepare test plan document and have needed reviews/approvals • Write test cases • Have needed reviews/inspections/approvals of test cases • Prepare test environment and testware, obtain needed user manuals/reference documents/configuration guides/installation guides, set up test tracking processes, set up logging and archiving processes, set up or obtain test input data • Obtain and install software releases • Perform tests • Evaluate and report results • Track problems/bugs and fixes • Retest as needed • Maintain and update test plans, test cases, test environment, and testware through life cycle

Question - 14 : - What's an 'inspection'?

Answer - 14 : - An inspection is more formalized than a 'walkthrough', typically with 3-8 people including a moderator, reader, and a recorder to take notes. The subject of the inspection is typically a document such as a requirements spec or a test plan, and the purpose is to find problems and see what's missing, not to fix anything. Attendees should prepare for this type of meeting by reading thru the document; most problems will be found during this preparation. The result of the inspection meeting should be a written report. Thorough preparation for inspections is difficult, painstaking work, but is one of the most cost effective methods of ensuring quality. Employees who are most skilled at inspections are like the 'eldest brother' in the parable in 'Why is it often hard for management to get serious about quality assurance?'. Their skill may have low visibility but they are extremely valuable to any software development organization, since bug prevention is far more cost-effective than bug detection.

Question - 15 : - What is 'Software Quality Assurance'?

Answer - 15 : - Software QA involves the entire software development PROCESS - monitoring and improving the process, making sure that any agreed-upon standards and procedures are followed, and ensuring that problems are found and dealt with. It is oriented to 'prevention'. (See the Bookstore section's 'Software QA' category for a list of useful books on Software Quality Assurance.)

Question - 16 : - How is testing affected by object-oriented designs?

Answer - 16 : - Well-engineered object-oriented design can make it easier to trace from code to internal design to functional design to requirements. While there will be little affect on black box testing (where an understanding of the internal design of the application is unnecessary), white-box testing can be oriented to the application's objects. If the application was well-designed this can simplify test design.

Question - 17 : - What makes a good QA or Test manager?

Answer - 17 : - A good QA, test, or QA/Test(combined) manager should: • be familiar with the software development process • be able to maintain enthusiasm of their team and promote a positive atmosphere, despite • what is a somewhat 'negative' process (e.g., looking for or preventing problems) • be able to promote teamwork to increase productivity • be able to promote cooperation between software, test, and QA engineers • have the diplomatic skills needed to promote improvements in QA processes • have the ability to withstand pressures and say 'no' to other managers when quality is insufficient or QA processes are not being adhered to • have people judgement skills for hiring and keeping skilled personnel • be able to communicate with technical and non-technical people, engineers, managers, and customers. • be able to run meetings and keep them focused

Question - 18 : - What if there isn't enough time for thorough testing?

Answer - 18 : - Use risk analysis to determine where testing should be focused. Since it's rarely possible to test every possible aspect of an application, every possible combination of events, every dependency, or everything that could go wrong, risk analysis is appropriate to most software development projects. This requires judgement skills, common sense, and experience. (If warranted, formal methods are also available.) Considerations can include: • Which functionality is most important to the project's intended purpose? • Which functionality is most visible to the user? • Which functionality has the largest safety impact? • Which functionality has the largest financial impact on users? • Which aspects of the application are most important to the customer? • Which aspects of the application can be tested early in the development cycle? • Which parts of the code are most complex, and thus most subject to errors? • Which parts of the application were developed in rush or panic mode? • Which aspects of similar/related previous projects caused problems? • Which aspects of similar/related previous projects had large maintenance expenses? • Which parts of the requirements and design are unclear or poorly thought out? • What do the developers think are the highest-risk aspects of the application? • What kinds of problems would cause the worst publicity? • What kinds of problems would cause the most customer service complaints? • What kinds of tests could easily cover multiple functionalities? • Which tests will have the best high-risk-coverage to time-required ratio?

Question - 19 : - Why does software have bugs?

Answer - 19 : - • miscommunication or no communication - as to specifics of what an application should or shouldn't do (the application's requirements). • software complexity - the complexity of current software applications can be difficult to comprehend for anyone without experience in modern-day software development. Windows-type interfaces, client-server and distributed applications, data communications, enormous relational databases, and sheer size of applications have all contributed to the exponential growth in software/system complexity. And the use of object-oriented techniques can complicate instead of simplify a project unless it is well-engineered. • programming errors - programmers, like anyone else, can make mistakes. • changing requirements (whether documented or undocumented) - the customer may not understand the effects of changes, or may understand and request them anyway - redesign, rescheduling of engineers, effects on other projects, work already completed that may have to be redone or thrown out, hardware requirements that may be affected, etc. If there are many minor changes or any major changes, known and unknown dependencies among parts of the project are likely to interact and cause problems, and the complexity of coordinating changes may result in errors. Enthusiasm of engineering staff may be affected. In some fast-changing business environments, continuously modified requirements may be a fact of life. In this case, management must understand the resulting risks, and QA and test engineers must adapt and plan for continuous extensive testing to keep the inevitable bugs from running out of control - see 'What can be done if requirements are changing continuously?' in Part 2 of the FAQ. • time pressures - scheduling of software projects is difficult at best, often requiring a lot of guesswork. When deadlines loom and the crunch comes, mistakes will be made. • egos - people prefer to say things like: 'no problem' 'piece of cake' 'I can whip that out in a few hours' 'it should be easy to update that old code' instead of: 'that adds a lot of complexity and we could end up making a lot of mistakes' 'we have no idea if we can do that; we'll wing it' 'I can't estimate how long it will take, until I take a close look at it' 'we can't figure out what that old spaghetti code did i

Question - 20 : - What is software 'quality'?

Answer - 20 : - Quality software is reasonably bug-free, delivered on time and within budget, meets requirements and/or expectations, and is maintainable. However, quality is obviously a subjective term. It will depend on who the 'customer' is and their overall influence in the scheme of things. A wide-angle view of the 'customers' of a software development project might include end-users, customer acceptance testers, customer contract officers, customer management, the development organization's management/accountants/testers/salespeople, future software maintenance engineers, stockholders, magazine columnists, etc. Each type of 'customer' will have their own slant on 'quality' - the accounting department might define quality in terms of profits while an end-user might define quality as user-friendly and bug-free.

Computer Contributors

krishan
Rajeev Katiyar
Yes Baroda

Share your email for latest updates

Name:
Email:

Our partners