• +91 9971497814
  • info@interviewmaterial.com

Computer Interview Questions Answers

C Interview Questions Answers

Question - 41 : - when should the volatile modifier be used?

Answer - 41 : - The volatile modifier is a directive to the compiler’s optimizer that operations involving this variable should not be optimized in certain ways. There are two special cases in which use of the volatile modifier is desirable. The first case involves memory-mapped hardware (a device such as a graphics adaptor that appears to the computer’s hardware as if it were part of the computer’s memory), and the second involves shared memory (memory used by two or more programs running simultaneously). Most computers have a set of registers that can be accessed faster than the computer’s main memory. A good compiler will perform a kind of optimization called redundant load and store removal. The compiler looks for places in the code where it can either remove an instruction to load data from memory because the value is already in a register, or remove an instruction to store data to memory because the value can stay in a register until it is changed again anyway. If a variable is a pointer to something other than normal memory, such as memory-mapped ports on a peripheral, redundant load and store optimizations might be detrimental. For instance, here’s a piece of code that might be used to time some operation: time_t time_addition(volatile const struct timer *t, int a) { int n; int x; time_t then; x = 0; then = t->value; for (n = 0; n < 1000; n++) { x = x + a; } return t->value - then; } In this code, the variable t-> value is actually a hardware counter that is being incremented as time passes. The function adds the value of a to x 1000 times, and it returns the amount the timer was incremented by while the 1000 additions were being performed. Without the volatile modifier, a clever optimizer might assume that the value of t does not change during the execution of the function, because there is no statement that explicitly changes it. In that case, there’s no need to read it from memory a second time and subtract it, because the answer will always be 0. The compiler might therefore optimize the function by making it always return 0. If a variable points to data in shared memory, you also don’t want the compiler to perform redundant load and store optimizations. Shared memory is normally used to enable two programs to communicate with each other

Question - 42 : - How can you avoid including a header more than once?

Answer - 42 : - One easy technique to avoid multiple inclusions of the same header is to use the #ifndef and #define preprocessor directives. When you create a header for your program, you can #define a symbolic name that is unique to that header. You can use the conditional preprocessor directive named #ifndef to check whether that symbolic name has already been assigned. If it is assigned, you should not include the header, because it has already been preprocessed. If it is not defined, you should define it to avoid any further inclusions of the header. The following header illustrates this technique: #ifndef _FILENAME_H #define _FILENAME_H #define VER_NUM 1.00.00 #define REL_DATE 08/01/94 #if _ _WINDOWS_ _ #define OS_VER WINDOWS #else #define OS_VER DOS #endif #endif

Question - 43 : - How can I search for data in a linked list?

Answer - 43 : - Unfortunately, the only way to search a linked list is with a linear search, because the only way a linked list’s members can be accessed is sequentially. Sometimes it is quicker to take the data from a linked list and store it in a different data structure so that searches can be more efficient.

Question - 44 : - In C, what is the difference between a static variable and global variable?

Answer - 44 : - A static variable declared outside of any function is accessible only to all the functions defined in the same file (as the static variable). However, a global variable can be accessed by any function (including the ones from different files).

Question - 45 : - How can I convert a string to a number?

Answer - 45 : - The standard C library provides several functions for converting strings to numbers of all formats (integers, longs, floats, and so on) and vice versa. The following functions can be used to convert strings to numbers: Function Name Purpose atof() Converts a string to a double-precision floating-point value. atoi() Converts a string to an integer. atol() Converts a string to a long integer. strtod() Converts a string to a double-precision floating-point value and reports any leftover numbers that could not be converted. strtol() Converts a string to a long integer and reports any leftover numbers that could not be converted. strtoul() Converts a string to an unsigned long integer and reports any leftover numbers that could not be converted.

Question - 46 : - What is the difference between goto and longjmp() and setjmp()?

Answer - 46 : - A goto statement implements a local jump of program execution, and the longjmp() and setjmp() functions implement a nonlocal, or far, jump of program execution. Generally, a jump in execution of any kind should be avoided because it is not considered good programming practice to use such statements as goto and longjmp in your program. A goto statement simply bypasses code in your program and jumps to a predefined position. To use the goto statement, you give it a labeled position to jump to. This predefined position must be within the same function. You cannot implement gotos between functions. When your program calls setjmp(), the current state of your program is saved in a structure of type jmp_buf. Later, your program can call the longjmp() function to restore the program’s state as it was when you called setjmp().Unlike the goto statement, the longjmp() and setjmp() functions do not need to be implemented in the same function. However, there is a major drawback to using these functions: your program, when restored to its previously saved state, will lose its references to any dynamically allocated memory between the longjmp() and the setjmp(). This means you will waste memory for every malloc() or calloc() you have implemented between your longjmp() and setjmp(), and your program will be horribly inefficient. It is highly recommended that you avoid using functions such as longjmp() and setjmp() because they, like the goto statement, are quite often an indication of poor programming practice.

Question - 47 : - When should the register modifier be used? Does it really help?

Answer - 47 : - The register modifier hints to the compiler that the variable will be heavily used and should be kept in the CPU’s registers, if possible, so that it can be accessed faster. There are several restrictions on the use of the register modifier. First, the variable must be of a type that can be held in the CPU’s register. This usually means a single value of a size less than or equal to the size of an integer. Some machines have registers that can hold floating-point numbers as well. Second, because the variable might not be stored in memory, its address cannot be taken with the unary & operator. An attempt to do so is flagged as an error by the compiler. Some additional rules affect how useful the register modifier is. Because the number of registers is limited, and because some registers can hold only certain types of data (such as pointers or floating-point numbers), the number and types of register modifiers that will actually have any effect are dependent on what machine the program will run on. Any additional register modifiers are silently ignored by the compiler. Also, in some cases, it might actually be slower to keep a variable in a register because that register then becomes unavailable for other purposes or because the variable isn’t used enough to justify the overhead of loading and storing it. So when should the register modifier be used? The answer is never, with most modern compilers. Early C compilers did not keep any variables in registers unless directed to do so, and the register modifier was a valuable addition to the language. C compiler design has advanced to the point, however, where the compiler will usually make better decisions than the programmer about which variables should be stored in registers. In fact, many compilers actually ignore the register modifier, which is perfectly legal, because it is only a hint and not a directive.

Question - 48 : - How can you check to see whether a symbol is defined?

Answer - 48 : - You can use the #ifdef and #ifndef preprocessor directives to check whether a symbol has been defined (#ifdef) or whether it has not been defined (#ifndef). Can you define which header file to include at compile time? Yes. This can be done by using the #if, #else, and #endif preprocessor directives. For example, certain compilers use different names for header files. One such case is between Borland C++, which uses the header file alloc.h, and Microsoft C++, which uses the header file malloc.h. Both of these headers serve the same purpose, and each contains roughly the same definitions. If, however, you are writing a program that is to support Borland C++ and Microsoft C++, you must define which header to include at compile time. The following example shows how this can be done: #ifdef _ _BORLANDC_ _ #include #else #include #endif

Question - 49 : - malloc() Function- What is the difference between "calloc(...)" and "malloc(...)"?

Answer - 49 : - 1. calloc(...) allocates a block of memory for an array of elements of a certain size. By default the block is initialized to 0. The total number of memory allocated will be (number_of_elements * size). malloc(...) takes in only a single argument which is the memory required in bytes. malloc(...) allocated bytes of memory and not blocks of memory like calloc(...). 2. malloc(...) allocates memory blocks and returns a void pointer to the allocated space, or NULL if there is insufficient memory available. calloc(...) allocates an array in memory with elements initialized to 0 and returns a pointer to the allocated space. calloc(...) calls malloc(...) in order to use the C++ _set_new_mode function to set the new handler mode.

Question - 50 : - Advantages of a macro over a function?

Answer - 50 : - Macro gets to see the Compilation environment, so it can expand __ __TIME__ __FILE__ #defines. It is expanded by the preprocessor. For example, you can’t do this without macros #define PRINT(EXPR) printf( #EXPR “=%d\n”, EXPR) PRINT( 5+6*7 ) // expands into printf(”5+6*7=%d”, 5+6*7 ); You can define your mini language with macros: #define strequal(A,B) (!strcmp(A,B)) Macros are a necessary evils of life. The purists don’t like them, but without it no real work gets done.

Computer Contributors

krishan
Rajeev Katiyar
Yes Baroda

Share your email for latest updates

Name:
Email:

Our partners